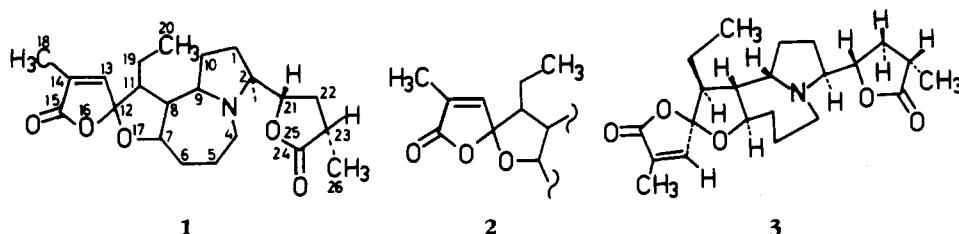


A STUDY OF STEMONA ALKALOIDS, III. APPLICATION OF 2D-NMR SPECTROSCOPY IN THE STRUCTURE DETERMINATION OF STEMONININE

DONGLIANG CHENG,¹ JIA GUO, TZE TSIN CHU,


Department of Chemistry, Lanzhou University, Lanzhou, China

and ERHARD RÖDER*

Pharmaceutical Institute of Bonn University, D-5300 Bonn-Endenich, An der Immenburg 4, West Germany

ABSTRACT.—A new alkaloid, stemoninine, obtained from the root of *Stemona sessilifolia*, and its stereochemistry have been elucidated by the analysis of the high resolution ¹H-nmr spectrum; ¹H, ¹H-COSY; ¹³C, ¹H-COSY shift correlated two-dimensional nmr spectra and ¹H long-range shift; and ¹³C, ¹H-COLOC- and nOe-correlated 2D-nmr techniques.

Previously we isolated the new alkaloid stemoninine from the root of *Stemona sessilifolia* (Mig.) Frack et Sav. (Stemonaceae; formerly Roxburghiaceae) and elucidated its structure by ir, uv, ¹H-nmr, ¹³C-nmr, and ms data (1,2). In the present paper, we further attempt to elucidate the structure and relative configuration of the molecule using 2D-nmr techniques such as ¹H (¹H, ¹H-COSY), ¹³C-¹H (¹³C, ¹H-COSY) shift correlations and ¹H-¹H long-range couplings shift, ¹³C-¹H long-range couplings shift (¹³C, ¹H-COLOC) as well as nOe-correlated 2D-nmr techniques (NOESY). From the analysis of these spectral data of stemoninine, the structure **3** is proposed.

RESULTS AND DISCUSSION

The molecular formula of stemoninine is $C_{22}H_{31}NO_5$. The molecular ion $[M]^+$ at m/z 389.2205 (calcd 389.2202) requires eight degrees of unsaturation. The ¹H-nmr signal at 0.77 ppm (*t*, $J = 7.5$ Hz) is due to a methyl group; two methyl groups are at 1.17 ppm (*d*, $J = 7.0$ Hz) and 1.85 ppm (*d*, $J = 2.0$ Hz); one olefinic proton is at 6.59 ppm (*d*, $J = 2.0$ Hz). Two signals at 171.3 ppm and 179.1 ppm in the ¹³C-nmr carbonyl region and one signal at 113.5 ppm indicate that a ketal group is present, and strong ir absorption around 1765 cm^{-1} suggested that two γ -lactones are present. The analysis of the high resolution ¹H-nmr spectrum (400 MHz) ¹H, ¹H-COSY (Figure 1) and ¹³C, ¹H-COSY (Figure 2) led to the full clarification of the carbon and proton signals (Table 1). The structure **1** was supported based on 2D long-range ¹³C, ¹H-shift correlated spectra (¹³C, ¹H-COLOC) (Figure 3), which illustrate important two-, three-, and four-bond couplings in the molecule (Table 2). The carbonyl carbons resonating at 179.1 ppm (C-24) and 171.3 ppm (C-15) correlate with 26-CH₃, 22-H, and 21 β -H, and with 18-CH₃ and 13-H. The quaternary (C-12) carbon with $\delta = 113.5$

*Visiting scientist in the Pharmaceutical Institute of Bonn University from October 1984 to September 1986.

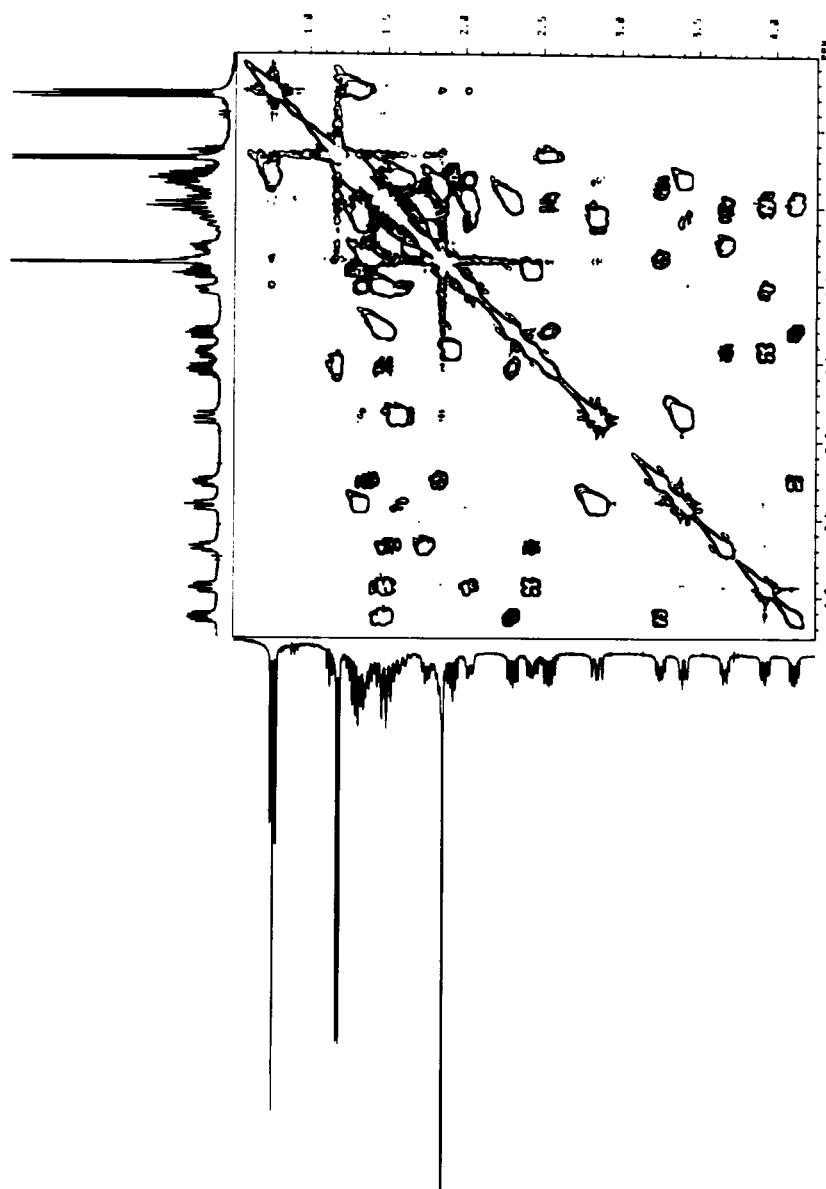


FIGURE 1. ^1H shift-correlated 2D-NMR spectrum of stemoninine [3] in CDCl_3 (^1H , ^1H -COSY), 400 MHz.

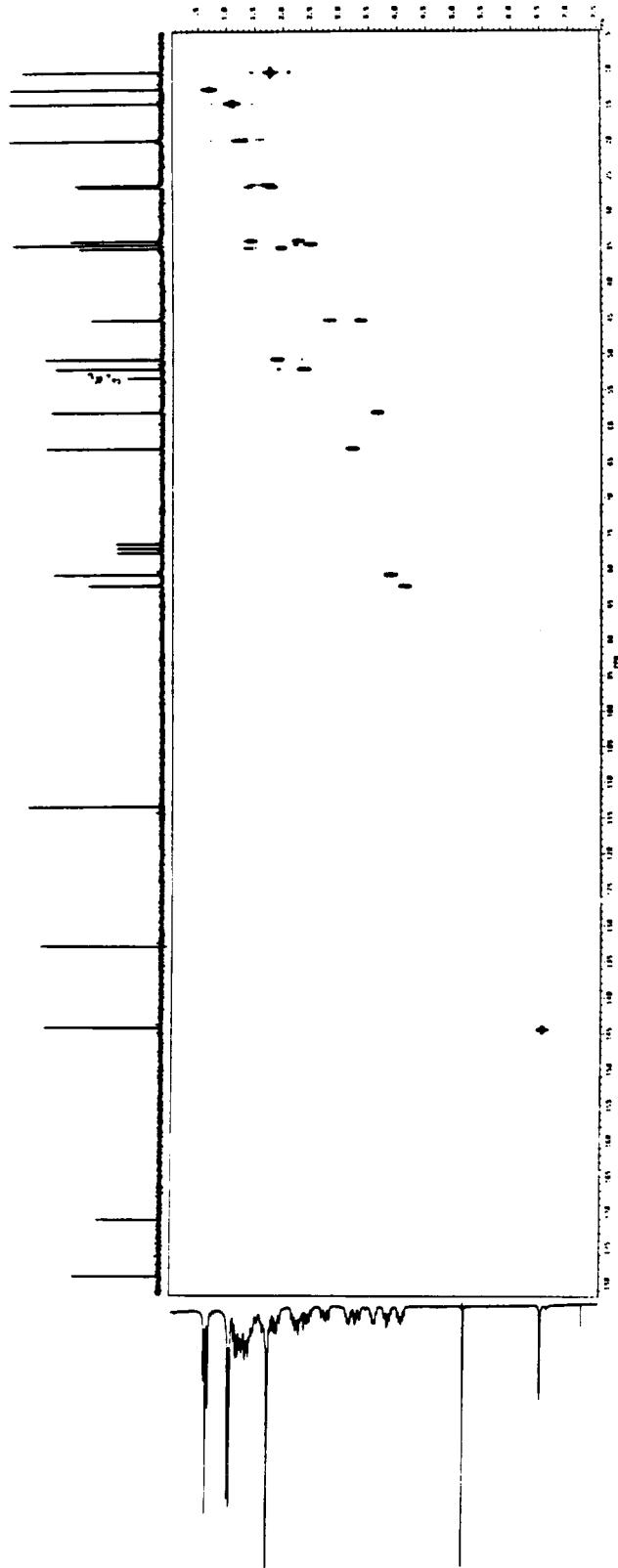


FIGURE 2. ^1H , ^{13}C shift-correlated 2D-nmr spectrum of stemoninone [3] in CDCl_3 (^1C , ^1H -COSY), 200 MHz.

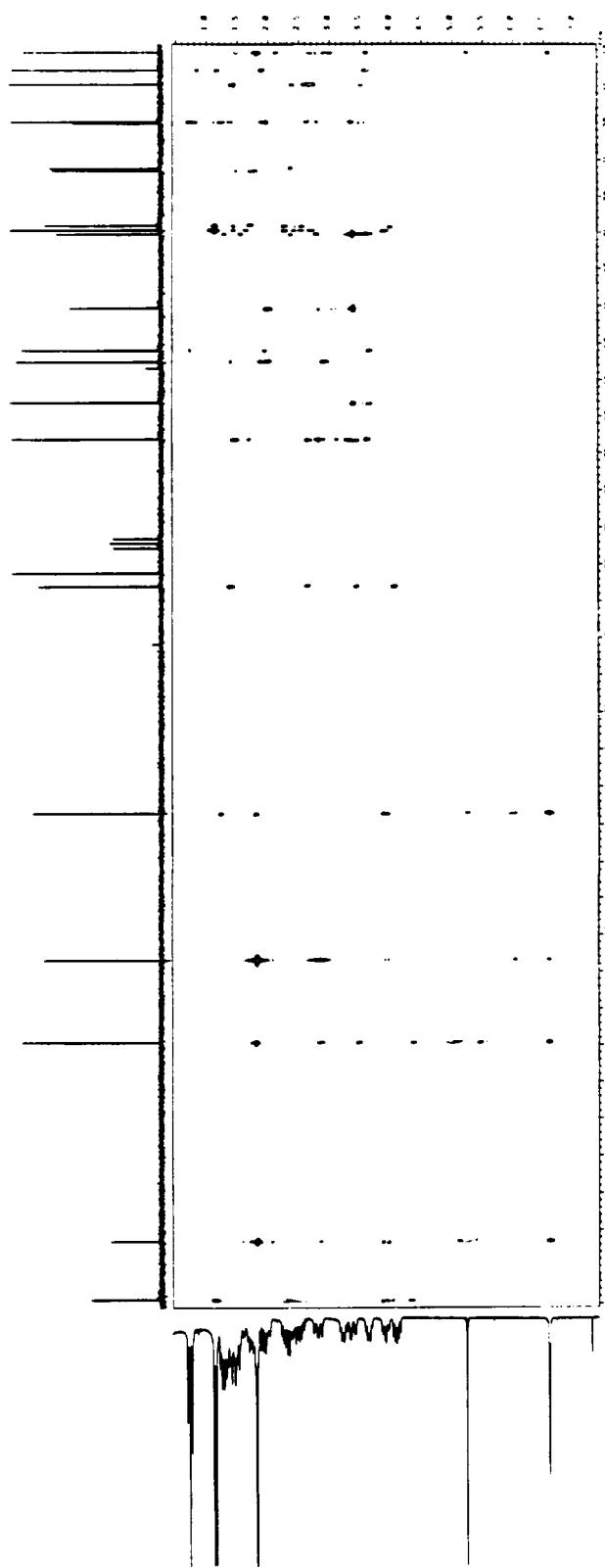


FIGURE 3. 2D long-range ¹H, ¹³C shift-correlated spectrum of stemoninine [3] in CDCl_3 (¹³C, ¹H-COSY), 200 MHz.

TABLE 1. ^{13}C -nmr (100.6 MHz) and ^1H -nmr (400 MHz) Data of Stemoninine [3].

Carbon	ppm	Proton	ppm	J (Hz)
C-1	26.5	1 α , β -H	1.35, 1.80	m
C-2	63.4	2 α -H	3.25	ddd 5.5 (1 β), 7.0 (21 β), 10.0 (1 α)
C-4	45.6	4 α -H	2.86	dd 11.5 (5 α), 15.5 (4 β)
		4 β -H	3.41	dd 9.0 (5 β), 15.5 (4 α)
C-5	20.2	5 α -H	1.57	m
		5 β -H	1.33	m
C-6	35.3	6 β -H	1.43	m
		6 α -H	2.03	brdd 3.5 (7 α), 12.0 (6 β)
C-7	81.1	7 α -H	3.93	ddd 3.5 (6 α), 9.5 (6 β), 11.0 (8 β)
C-8	52.4	8 β -H	2.43	ddd 5.5 (11 α), 9.5 (9 β), 11.0 (7 α)
C-9	58.3	9 β -H	3.68	dt 6.0 (10 α), 6.0 (10 β), 9.5 (8 β)
C-10	26.3	10 α , β -H	1.50, 1.75	m
C-11	51.2	11 α -H	1.93	ddd 5.5 (8 β), 7.0 (19-H _a), 12.0 (19-H _b)
C-12	113.5			
C-13	144.4	13-H	6.59	d 2.0 (18-CH ₃)
C-14	133.5			
C-15	171.3			
C-18	10.3	18-CH ₃	1.85	d 2.0 (13-H)
C-19	20.0	19 _a -H	1.28	m
		19 _b -H	1.60	m
C-20	12.7	20-CH ₃	0.77	t 7.5
C-21	82.4	21 β -H	4.14	ddd 5.5 (22 α), 7.0 (2 α), 10.0 (22 β)
C-22	34.1	22 β -H	1.43	m
		22 α -H	2.31	ddd 5.5 (21 β), 9.0 (23 β), 12.0 (22 β)
C-23	34.7	23 β -H	2.54	ddq 7.0 (26-CH ₃), 9.0 (22 α), 12.0 (22 β)
C-24	179.1			
C-26	14.8	26-CH ₃	1.17	d 7.0 (23 β)

ppm shows long-range couplings with 13-H, 11-H, 19-H, and 7-H, thus indicating the presence of the ketal substructure and an ethyl group linked to C-11. Substructure 2 has also been indicated by metastable ions in the mass spectrum of stemoninine (2).

The assignment of the relative configuration of stemoninine was suggested by the ^1H - ^1H -COSY long-range couplings, by nOe-correlated 2D nmr techniques (NOESY), and by observing the J -values in the high resolution ^1H -nmr spectrum. Fuyihiko and Akira (3) used the ^1H , ^1H -COSY long-range 2D nmr for this purpose. The 90- Δ - t_1 -45- Δ - t_2 sequence was studied, when Δ (delay time) was set to 350 msec. The cross peaks due to small couplings (less than ca. 1 Hz) are enhanced, while those due to large couplings (more than 3 Hz) are suppressed (Figure 4). The cross peak A is due to the long-range coupling between 11-H, and 20-CH₃. The cross peak B is due to the long-range coupling between 22-H and 26-CH₃, and the cross peak C is due to the long-range coupling between 9-H and 1-H. According to the Karplus equation, we compared our values with the coupling constants of two vicinal protons (8-H, 11-H, $J_{8,11}$ = 5.5 Hz). The corresponding dihedral angle (Φ) between two vicinal protons should be approximately 120°; consequently, the relative configuration of 11-H and 8-H should be *trans*. We observed also the coupling constant between the two vicinal protons at 7-H, 8-H, $J_{7,8}$ = 11.0 Hz and between the two vicinal protons at 8-H, 9-H, $J_{8,9}$ = 9.5 Hz. Their corresponding dihedral angles should be approximately 180° and 0°, respectively. This means that the former should be *trans* oriented and the latter *cis* oriented.

The nOe-correlated spectrum in a contour plot is shown in Figures 5 and 6; the pulse sequence 90- t -90- τ_m -90- t was used. We have used 600 msec and 1000 msec for τ_m ; CDCl₃/CDCl₃ and C₆D₆/C₆D₆ were used as solvents. The τ_m = 1000 msec seems to

TABLE 2. Cross Peaks of Carbon to Proton in the NOESY of Stemoninine [3]; Several Observed Two-, Three-, and Four-Bond ^{13}C - ^1H Couplings in Stemoninine.

Carbon	ppm	Cross peaks to proton
C-1	26.5	10-H
C-2	63.4	1-H, 2 α -H, 4 α -H, 4 β -H, 9 β -H, 22 β -H
C-4	45.6	4 α -H, 4 β -H, 6 α -H
C-5	20.2	4 α -H, 4 β -H, 5 β -H, 6 α -H, 6 β -H, 8 β -H
C-6	35.3	4 α -H, 4 β -H, 5 β -H, 6 β -H, 7 α -H, 8 β -H
C-7	81.1	cannot be observed
C-8	52.4	6 α -H, 6 β -H, 11 α -H
C-9	58.3	4 β -H, 9 β -H
C-10	26.3	1 β -H, 8 β -H
C-11	51.2	9 β -H, 11 α -H, 20-CH ₃
C-12	113.5	7 α -H, 9 β -H, 11 α -H, 13-H
C-13	144.4	13-H, 18-CH ₃
C-14	133.5	7 α -H, 13-H, 18-CH ₃
C-15	171.3	13-H, 18-CH ₃
C-18	10.3	13-H
C-19	20.0	11 α -H, 19 _b -H, 20-CH ₃
C-20	12.7	11 α -H, 19 _a -H, 20-CH ₃
C-21	82.4	4 β -H, 21 β -H, 23 β -H
C-22	34.1	21 β -H, 22 α -H, 22 β -H, 23 β -H, 26-CH ₃
C-23	34.7	22 α -H, 22 β -H, 23 β -H, 26-CH ₃
C-24	179.1	21 β -H, 22 α -H, 23 β -H
C-26	14.8	22 β -H, 23 β -H

be better than 600 msec. The peaks a-f are quite useful for the elucidation of the stereochemistry. For example, the cross peak a,b indicates the proximity of the protons 11 α -H and 1 α -H to the olefinic proton 13-H; the cross peak c shows proximity of the proton 11 α -H to 10 α -H. Figure 6 shows the cross peak f indicating the close proximity of the proton 7 α -H to the proton 11 α -H.

We have carefully studied the molecular model of stemoninine. The assignment of the ketal of stemoninine should be appropriate in structure **3** when the olefinic proton 13-H is in close proximity to proton 11 α -H. That means that the relative configuration of the substituents attached to C-12 was determined. We have not observed the cross peak between 2-H and 21-H in NOESY and all nuclear Overhauser effects in nOe-difference spectra, but the relative configurations of C-2 and C-23 β have been determined in other *Stemona* alkaloids (4-9) to be 2 α -H and 23 β -H. The stereochemistry of stemoninine is, therefore, suggested as **3**.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.— ^1H - and ^{13}C -nmr spectra were determined in CDCl_3 with TMS as internal standard on a Bruker WH 400 spectrometer at 400 MHz and 100.6 MHz, respectively. All the 2D nmr spectra were recorded on a Bruker WH 400 and 200 spectrometer. ^1H shift-correlated 2D nmr spectra were observed by using the pulse 90°- τ_1 -45°- τ_2 (10). We used a 45° rather than a 90° pulse as mixing pulse without delay time (^1H , ^1H -COSY 45, Figure 1).

The ^{13}C - ^1H shift-correlated 2D nmr spectrum was obtained by using the refocusing delay time of 6.3 msec and the relaxation delay time of 1 sec (^{13}C , ^1H -COSY, Figure 2). The ^{13}C - ^1H long-range shift correlated 2D nmr spectrum with polarization transfer via *J*-coupling experiment has been carried out with the aid of a Bruker micro-program (11); fixed delays D_3 and D_4 were adjusted to give maximum polarization for $J_{\text{CH}} = 8.0$ Hz (^{13}C , ^1H -COLOC, Figure 3). The long range shift correlated 2D nmr with delay time of 350 msec was observed by using the 90°- $\Delta\tau_1$ -45°- $\Delta\tau_2$ sequence (12) (Figure 4). The 2D nOe spectrum was measured by using the pulse sequence 90°- τ_1 -90°- τ_2 . We have used 600 msec and 1000 msec for τ_m , and CDCl_3 and C_6D_6 as solvent (NOESY, Figures 5 and 6) (13).

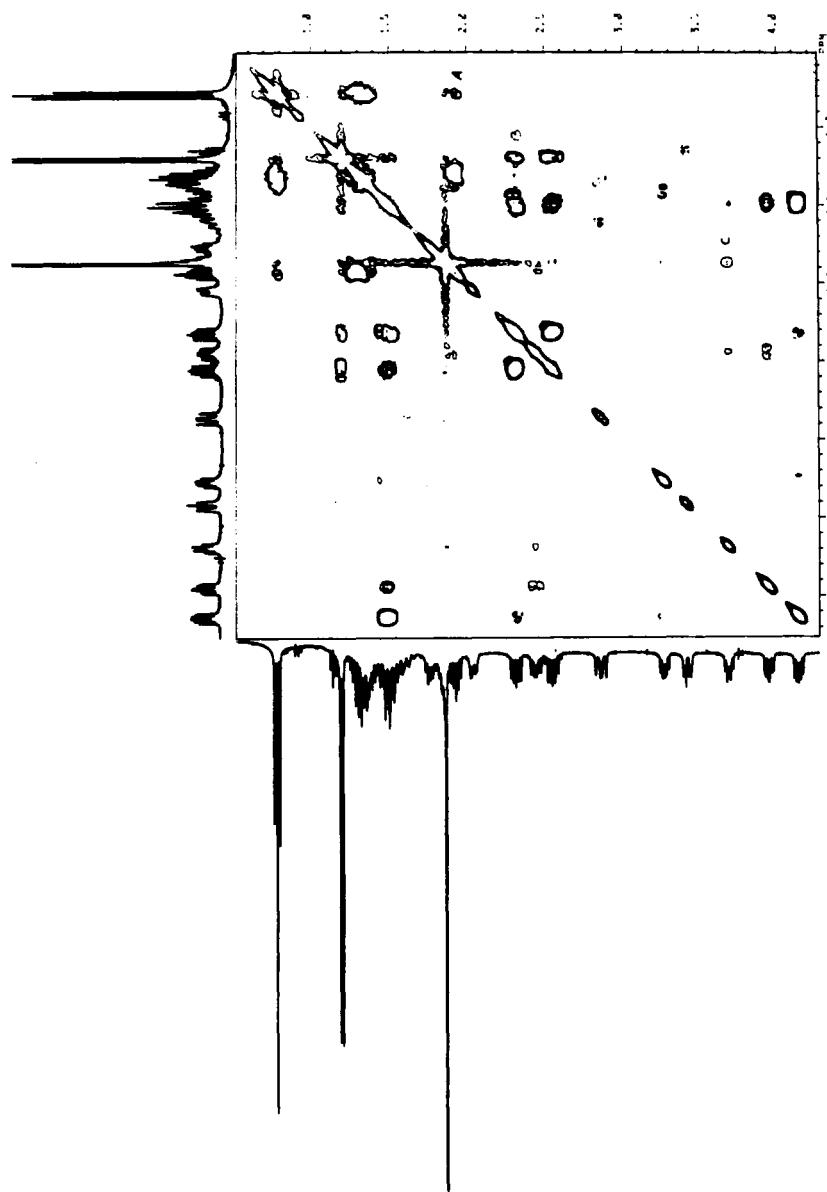


FIGURE 4. 2D long-range $^1\text{H}, ^1\text{H}$ shift-correlated spectrum of stemoninone [3] with delay time of 350 msec in CDCl_3 , 400 MHz.



FIGURE 5. NOE-correlated 2D-nmr spectrum of stemononine [3] with mixing time of 1000 msec in C_6D_6 , 400 MHz.

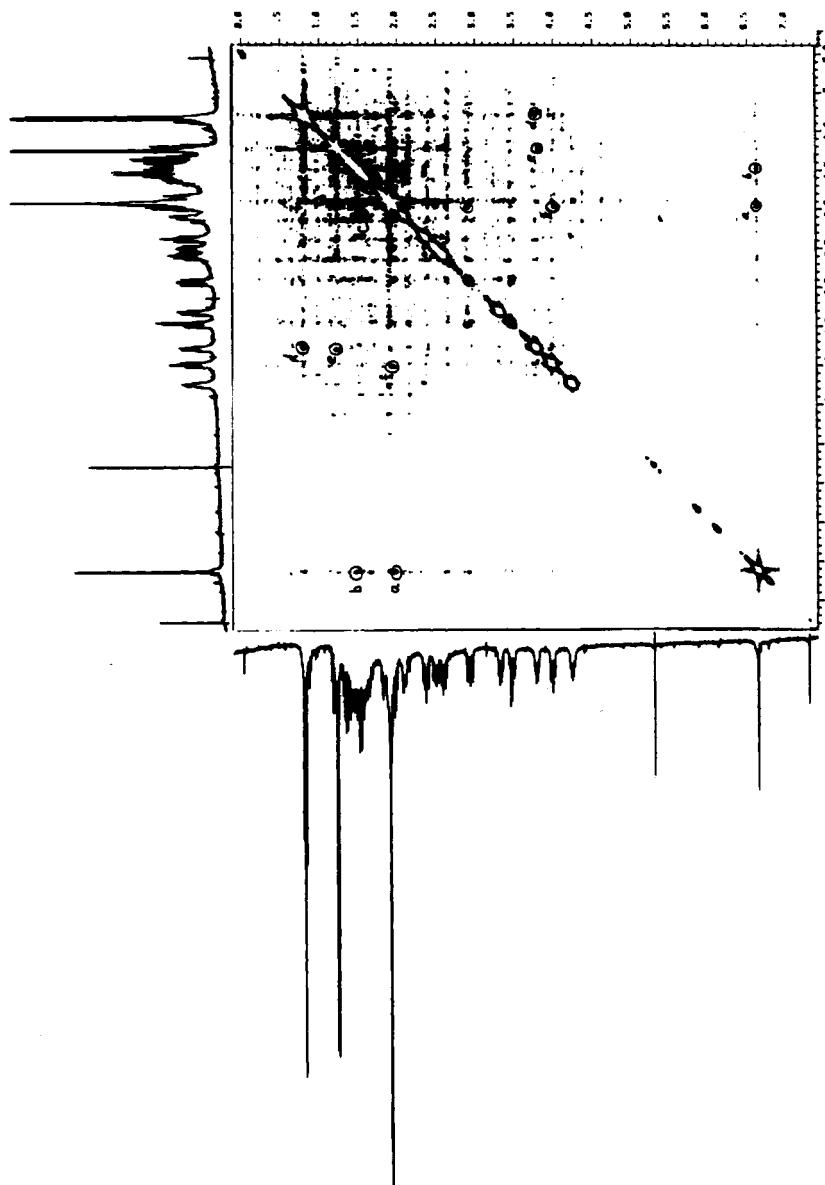


FIGURE 6. NOE-correlated 2D-nmr spectrum of stemoninine [3] with mixing time of 1000 msec in CDCl_3 , 400 MHz.

ACKNOWLEDGMENTS

We are greatly indebted to Professor Dr. E. B. Breitmaier, Institute of Organic Chemistry, Bonn University, for the analysis of the 2D-nmr spectra and beneficial discussions about the elucidation of the structure. We thank engineer C. Schmidt, Analytic Center, Bonn University, for the enthusiastic help and measurement of one- and two-dimensional nmr spectra.

LITERATURE CITED

1. C. Kuo and T. Ts. Chu, *Acta Chim. Sin.*, **36**, 291 (1978); *Chem. Abstr.*, **90**, 164717y (1979).
2. J. Guo, *Acta Chim. Sin.*, **39**, 865 (1981); *Chem. Abstr.*, **97**, 178697y (1982).
3. I. Fuyihiko and A. Akira, *J. Chem. Soc., Perkin Trans. 2*, 1773 (1985).
4. R.S. Xu, J.Y. Lu, J.H. Chu, T. Iwashita, H. Naoki, Y. Naya, and K. Nakanishi, *Tetrahedron*, **38**, 2667 (1982).
5. M. Gotz and G.M. Strunz, in: "Alkaloids." Ed. by G. Wiesner, MTP, International Review of Sciences Organic Chemistry, Series 1, Vol. 9, Butterworths, London, 1975, pp. 134-160.
6. O.E. Edwards, in: "The Alkaloids." Ed. by R.H.F. Manske, Vol. 9, Academic Press, New York, 1967, pp. 545-551.
7. K. Nakanishi, T. Goto, S. Ito, S. Natori, and S. Nozoe (Eds.), "Natural Products Chemistry," Vol. 2, Academic Press, New York, 1975, pp. 292-293.
8. H. Iizuka, H. Irie, N. Masaki, K. Osaki, and S. Uyeo, *Chem. Commun.*, **4**, 125 (1973).
9. T. Noro, S. Fukushima, A. Ueno, Y. Iitaka, and Y. Saiki, *Chem. Pharm. Bull.*, **27**, 1495 (1979).
10. W.P. Aue, E. Bartholdi, and R.R. Ernst, *J. Chem. Phys.*, **64**, 2229 (1976).
11. H. Kessler, C. Griesinger, J. Zarbock, and H.R. Loosli, *J. Magn. Reson.*, **57**, 331 (1984).
12. A. Bax and R. Freeman, *J. Magn. Reson.*, **44**, 542 (1981).
13. R. Baumann, A. Kumar, R.R. Ernst, and K. Wüthrich, *J. Magn. Reson.*, **44**, 76 (1981).

Received 17 February 1987